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Automated or semiautomated pattern recognition in multidimen- an easy expansion to more general and multivariate cases.
sional NMR spectroscopy is strongly hampered by the large number Recently, we reported a Bayesian method coupled to a multi-
of noise and artifact peaks occurring under practical conditions. A variate linear discriminant analysis (8) . The actual imple-
general Bayesian method which is able to assign probabilities that mentation was limited to the use of local properties of reso-
observed peaks are members of given signal classes (e.g., the class nance and artifact peaks. An important global property is
of true resonance peaks or the class of noise and artifact peaks) was

the spectral symmetry, which occurs in many types of homo-proposed previously. The discriminative power of this approach is
nuclear two-dimensional spectra such as NOESY anddependent on the choice of the properties characterizing the peaks.
TOCSY spectra. In the past this spectral feature was mainlyThe automated class recognition is improved by the addition of a
used for an improvement of the spectral quality by the sym-nonlocal feature, the similarities of peak shapes in symmetry-related
metry enhancement (6, 9–14) . In the present paper we willpositions. It turns out that this additional property strongly decreases

the overlap of the multivariate probability distributions for true sig- show how it can be used for an efficient signal class recogni-
nals and noise and hence largely increases the discrimination of true tion in two-dimensional NMR spectra.
resonance peaks from noise and artifacts. q 1997 Academic Press

MATERIALS AND METHODS

SoftwareINTRODUCTION
Peak picking and integration was performed using the

A practical problem often encountered during the evalua- standard routines of the program package AURELIA (15) .
tion of multidimensional data is the occurrence of noise and The method used by AURELIA for peak picking has been
artifact peaks which may result in ambiguous and erroneous outlined earlier (6) . The software developed and described
assignments. This problem is particularly severe in auto- here is implemented in the program package AURELIA but
mated assignment procedures where the occurrence of a a stand-alone version can also be obtained from the authors.
large number of noise or artifact peaks can lead to an instabil-

NMR Spectroscopyity of the algorithms giving wrong results or alternatively a
too large number of possible true solutions. As a practical HPr protein from Staphylococcus carnosus was isolated
solution for this problem, most more advanced program as described (16) . The sample contained 3.1 mM HPr pro-
packages have interactive routines which allow one to re- tein and 0.05 mM EDTA in 500 ml of 95% H2O/5% D2O.
move wrong solutions at any stage of the evaluation. Since The NOESY spectrum (17) was recorded on a Bruker AMX-
this interactive work is tedious, it is desirable to transfer at 500 NMR spectrometer operating at 500 MHz. The water
least part of the work to the computer. signal was suppressed by selective presaturation. A mixing

To discriminate true resonance peaks from noise or artifact time of 100 ms was used. Phase-sensitive detection in the
peaks, it is necessary to know features characteristic for each t1 direction was obtained according to Marion and Wüthrich
class of those peaks. Typical features which can be taken (18) . The 1K 1 4K time domain data were recorded and
into account are local properties such as peak intensities and transformed to different sizes as indicated. Frequency data
peak shapes or global spectral features such as t1 ridges or were referenced to the internal standard 4,4-dimethyl-4-sila-
the presence of symmetry-related partners (1–7) . pentane sulfonic acid (DSS).

Bayesian reasoning is a powerful statistical method of
THEORETICAL CONSIDERATIONSgreat flexibility. Its operational conditional formalism allows

According to Bayes’s theorem (19, 20) the probability
Pj(ClÉE j) that cross peak j with values E j

k of the properties1 To whom correspondence should be addressed.
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166 SCHULTE ET AL.

FIG. 1. Interpolation of asymmetric spectral areas. If the dimensions of the frequency domain data SI1 and SI2 are not equal, the discrete grid (gray
dots) of the spectral areas Uij and U *j i used to calculate the match factor of a peak Iij contains a different number of data points in both dimensions. To
calculate the match factor M intermediate data points (white dots) are calculated by linear interpolation. If the peak I *j i which is symmetric to Iij does
not lie on the discrete (gray) grid, the area U *j i must be shifted by an offset d before calculation of the match factor.

Ek (k Å 1, . . . , K *) belongs to class Cl (l Å 1, . . . , L) are statistically independent. In this case, the multivariate
distribution can be obtained as a product of the individualcan be calculated as
univariate distributions p (EkÉCi ) . If Q variables are inde-
pendent and the remaining K Å K * 0 Q variables are corre-

Pj(ClÉE j) Å P(Cl)P(E j
ÉCl)

(L
mÅ1 P(Cm)P(E j

ÉCm)
[1] lated, the correlated variables can be replaced by a set

of L new orthogonal variables Yk by a linear discriminant
analysis. The probability Pj for a given peak j to be memberwith the a priori probability P (Cl) of finding a peak of class
of class Cl is then given by (8 )Cl and P (E j

ÉCl) the conditional probability of finding the
properties E j for a peak of class Cl . If the multivariate
probability distribution p (EÉCl) is not known a priori, it Pj(ClÉY1 , . . . , YL , E1 , . . . , EQ)
must be obtained from a sample which, in general, must be
sufficiently large in order to describe the multidimensional
distribution function p completely. The distribution can be Å

P(Cl) ∏L

kÅ1
P(Yj

kÉCl) ∏Q

iÅ1
P(Ej

iÉCl)

(L
mÅ1 P(Cm) ∏L

kÅ1
P(Yj

kÉCm) ∏Q

iÅ1
P(Ej

iÉCm)
. [2]

obtained from a much smaller sample if the properties Ek
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167GLOBAL SYMMETRIES IN AUTOMATED SIGNAL CLASS RECOGNITION

FIG. 2. Probability distributions for noise and true resonance signals. Probability distributions obtained in a Gaussian-filtered NOESY spectrum of HPr
from S. carnosus (1024 1 1024 real frequency domain data points after Fourier transformation of 1024 1 1024 time domain data points). Thick lines,
true signals; thin lines, noise and artifact signals. The distributions were smoothed as described in the text; (a) p(I) is the intensity distribution, (b) p(Y )
is the probability distribution for the Y factor as described by Antz et al. (8) , and (c) is the p(M) is the probability distribution for the match factor M .

The already published signal recognition procedure made cally independent of the local properties describing a peak,
this property can be easily added to the already existinguse of only local properties of the cross peaks (8) . If one

assumes that the global symmetry of the spectrum is statisti- properties using the basic equation [2]. What is essentially
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FIG. 3. Improvement of the signal class recognition by the use of spectral symmetry. Part of the spectrum used in Fig. 2; the probabilities of the
peaks to be true resonance signals are indicated: ( left) without use of the symmetry relation and (right) including global symmetry. A few peaks where
the use of the symmetry relation is especially important are highlighted.

needed consists in a measure for the occurrence of a cross with r*ij Å rij 0 »rij… 1 and
peak with similar shape at a symmetry-related position.

A very simple and normalized similarity measure for
quantifying the property ‘‘global symmetry’’ for a given »rij… Å

1
(2n / 1)(2m / 1)

∑
n

nÅ0n

∑
m

mÅ0m

Iij(m, n) , [5]
cross peak is the match factor M defined earlier for symmetry
enhancement in NMR spectra (13) . In its elementary form
it is defined as with n and m the dimensions of the rectangular area.

M*ij Å
rijrr *j i

ÉrijÉ Ér *j iÉ

, [3]
PRACTICAL IMPLEMENTATION

with the vector rij containing the data points Iij(m, n) of a As already described for the signal class discrimination
rectangular area around the cross peak which have an offset from local properties (8 ) the probability distributions for
of (m, n) grid units with respect to the cross peaks maximum noise and signal peaks are obtained by analyzing their
at ( i , j), and the vector r*j i containing the data at the environ- distribution in specific spectral learning areas defined by
ment of the symmetry-related position ( j , i). The match the user. The definition of an area that contains only noise
factor M*ij equals 1 for peaks with identical shape and is and artifact peaks but no true signals can usually be per-
independent of the absolute intensity. Since base plane varia- formed without larger difficulties. This is not possible for
tions may influence the effective peak shape, generally it is the learning area used for the recognition of true signal
better to use the match factor in its offset corrected form (14) peaks since any area in the spectrum contains also noise

peaks. However, since in a first approximation the occur-
rence of a symmetry-related true signal does not dependMij Å

r*ij rr **j i

Ér*ij É Ér **j i É

[4]
on the absolute intensity, the probability distribution can
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FIG. 3—Continued

be constructed from the most intense peaks, which are facts, ideally one would correct for these factors before
likely not to be noise peaks. the calculation of the symmetry match. A very common

If one of the symmetry-related cross peaks is located on spectral asymmetry arises from differences in the number
a t1-noise ridge, it does not make sense to infer the probabil- of data points recorded in the t1 and t2 directions. This
ity of being a true signal from its calculated match factor. asymmetry is not removed by a suitable zero-filling of the
In this case an extreme difference in peak intensities of the time domain data even if the same number of data points
compared cross peak areas would be observed. Only peaks in the two dimensions has been obtained after Fourier
in the learning area of true signals for which transformation.

If the number of data points in the two dimensions of the
frequency domain is not equal, the match factor can no0.1 õ »rij…

»r *j i…

õ 10 [6]
longer be calculated according to Eq. [4] . The problems
arise because a part of the symmetry-related data points to
be compared does not exist in the digital grid of the experi-holds are included in the construction of the corresponding
mental data. The situation is complicated by the fact that,probability distribution. Analogously, if the intensities of a
even if such a symmetry-related grid point exists the ‘‘true’’peak in the test area and its symmetric partner do not fullfill
peak maxima (to be observed at infinite resolution) usuallythe criterion [6] , the global symmetry is neglected when
are not located exactly on the grid points but are now pro-calculating the probability that this peak belongs to the signal
jected to an inherently asymmetric digital grid. The influenceclass.
of these effects on the match factor can be reduced by tran-Under practical conditions the inherent global symme-
siently decreasing the digital resolution of the two areastry of two-dimensional NMR spectra is often perturbed
compared to the lower limit (usually determined by the v1by an asymmetry resulting from the data acquisition or
dimension) or by interpolation of the missing data points.processing. Although the match factor defined by the rela-

tions [3 ] to [5] is rather tolerant concerning these arti- From these two possible methods the second method turned
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out to give superior results: the two spectral regions com-
pared are enlarged by a linear interpolation prior to the calcu-
lation of the match factor (Fig. 1) . The other alternative,
decreasing the digital resolution, results in areas which are
too small for the calculation of a match factor with high
significance.

Since the probability distributions are deduced from
a limited, discrete sample, the curves obtained must be
smoothed. This has been done previously by a floating
binomial average filter (8 ) . In addition, values of the
obtained probability distribution equal to 0 must be cor-
rected and set to a small but finite value to allow well-
defined probability calculations according to Eq. [2 ] be-
cause they are usually artifacts caused by the finite size
of the sample.

To overcome these problems that can arise from small
numbers of peaks in the training areas, in the new imple-
mentation of the program a different method of constructing
a smooth distribution function has been chosen. The proper-
ties of the sample peaks are no longer ordered in classes
of equal widths; instead, a distribution is constructed from
classes with variable widths. First, the occurring values of
properties E j

k are sorted by magnitude, leading to rrr õ
E j01

k õ E j
k õ E j/1

k õ rrr. From these sorted values a
smoothed distribution is constructed which assumes that
the 11 values E j05

k , . . . , E j/5
k are normally distributed

about their mean

»Ek , j… Å
1

11
∑
5

aÅ05

E j/a
k [7]

with the variance

s 2
k , j Å

1
11

∑
5

aÅ05

(E j/a
k 0 »Ek , j…)

2 / s 2
0,k . [8]

The probability distribution of the property k can then be
approximated as the sum of normalized Gaussians,

p(Ck)(x) Å 1 0 p0,k

J
∑
J

jÅ1

1

sk , j

√
2p

1 expS0 1
2 S x 0 »Ek , j…

sk , j
D2D / p0,k , [9]

where s0,k and p0,k are small values correcting for the limited
accuracy of the values of the properties and for too small
values of the distributions arising from the finite sample size,

FIG. 4. Dependence of match factor distributions on data processing.respectively. In the current implementation p0,k is chosen to
The same NOESY data set as in Fig. 2 was used but processed in differentfulfill ways. (a) 512 1 1024 time domain data points TD1 and TD2, Gaussian
filtering of the data before Fourier transformation using the same filter
function in both dimensions, and 1024 1 1024 real frequency domain data*

range of values

p0,kdx Å 0.005. [10] points SI1 and SI2. (b) As (a) but SI1 Å 512; (c) TD1 Å 256, TD2 Å
1024, SI1 Å 256, SI2 Å 1024; (d) as (c) but SI1 Å 128.
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This method of constructing the probability distribu- in the d1 and d2 dimensions after Fourier transformation
were used. Figure 4a shows that a twofold zero-filling intions has the favorable property that the distribution

functions obtained are well defined everywhere and are the t1 direction and a onefold zero-filling in the t2 direction
does not change the probability distributions of M much.larger than zero in the entire range of valid values ( in

the case of the match factor M , this is the closed interval The noise distribution is still centered about its theoretical
value of zero and well separated from the match factor[01, 1] ) .
distribution of true signals with its maximum near M Å
1. In the second example, the number of data points inRESULTS AND DISCUSSION
the d1 dimension was reduced by a factor of 2 (Fig. 4b) .
The distributions obtained are still rather well separatedAlthough the general Bayes theorem is applicable for any

probability distribution (objective or subjective) , the dis- but the number of peaks with M close to 1 decreases; that
is, even after interpolation the peaks have increasinglycrimination power in signal class recognition depends on the

separation of the multivariate distribution functions for noise different shapes. Even in extreme cases where the size of
the two dimensions differs by a factor of 4 (Fig. 4c )and true signals. Figure 2 shows an example for the probabil-

ity distributions for different properties obtained for a or 8 (Fig. 4d) the construction of p (M ) can be handled
satisfactorily by the expansion procedure described above.NOESY spectrum of HPr from S. carnosus. The intensity

distribution (Fig. 2a) discriminates well between noise sig- The probability distributions obtained are still well sepa-
rated although the ideal symmetry (M Å 1 ) is clearlynals and true signals for high intensities. For peaks with

low intensities the information obtained from the reduced disturbed.
In summary, the inclusion of symmetry information invariable Y which characterizes the peak shape is necessary

(8) . However, the Y distributions for noise and true peaks the signal recognition procedure is a valuable method for
improving the discrimination power of the method. How-have a large range of overlap (Fig. 2b). In contrast, the

distributions of the match factor for the two classes are very ever, the use of this information requires that the data pro-
cessing conserve this symmetry. If there are good reasonswell separated (Fig. 2c) .

With these distributions the probabilities of cross peaks to destroy this symmetry in the spectrum under consideration
(e.g., if the digital resolution of the time domain data in thebeing true resonance signals were calculated. Figure 3 de-

picts a typical part of the NOESY spectrum with the obtained t1 and t2 directions is very different) , the full symmetry
information can still be used by applying the recognitionprobabilities indicated. Without using the symmetry infor-

mation (Fig. 3, left) , in general a satisfactory result is ob- procedure to a second spectrum which is symmetrically pro-
cessed. The probabilities obtained can then be transferred totained for the majority of the cross peaks. However, a num-

ber of very weak cross peaks cannot be recognized safely the asymmetrically processed spectrum.
on the basis of the intensity and peak shape information
only. With addition of the symmetry information (Fig. 3, ACKNOWLEDGMENTS
right) , these peaks have high signal probabilities when a
symmetrical partner with similar shape was found, and de- This work was supported by the European Union. We thank W. Hengs-
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